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ABSTRACT 
We estimate Bohr radius and binding energy of exciton in bulk as well as quantum well for semiconductors with 

non-parabolic energy band structure. Kane type dispersion relation is used to incorporate such band non-

parabolicity. Exciton binding energy in various III-V semiconductors are calculated for two different expressions 

of non-parabolicity factor α, and results are compared with those for parabolic energy bands. In presence of band 

non-parabolicity, exciton binding energies are found to increase in quantum wells, whereas such variation is 

almost insignificant in bulk semiconductors. 
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INTRODUCTION 
Exciton plays a key role in a wide range of opto-electronic devices used in optical communication systems or 

optical computers. Confinement of carriers leads to higher value of exciton binding energy in Quantum well (QW) 

or other low-dimensional systems.  The energy spectrum and wave-functions of quantum confined excitons are 

strongly different from those of bulk excitons.  The density of states changes from a smooth parabola in three 

dimensions to a stair case in two-dimensional (2D) system, which in turn, enhances the optical properties. Such 

enhancement of optical absorption and emission results in well-defined exciton lines in QWs [1] even at room 

temperature. Dingle et al. [2] were the first to observe enhanced excitonic effects in the quantum well structure, 

while Miller et al. [3] measured such increase in exciton binding energy in these structures. Bastard et al.[4] and 

Greene et al.[5,6] assumed confinement of the carriers in either an infinite or finite square quantum well and 

estimated binding energy of the exciton using variational technique. Leavitt and Little [7] presented a general 

method for calculating the exciton binding energies in various complex quantum confined semiconductor 

structures. In recent time, self-consistent approach is tried out [8], which is very effective for wide band-gap 

material and can be extended to asymmetric QW. 

 

Excitonic absorption in QWs can be greatly varied by application of electric field along the direction of growth 

of the well and this phenomenon is termed as Quantum Confined Stark Effect (QCSE). In fact, strong modulation 

is obtained when absorption edge is dominated by excitonic effects. This is put to practical use in high performance 

semiconductor electro-optic modulators. Such devices based on zinc blende III-V semiconductors are being 

extensively used for data transmission, photonic switching and optical interconnects. At present, visible 

/ultraviolet electro-absorption modulators based on wide band gap nitride semiconductors viz. GaN films and 

GaN/AlGaN multiple Quantum wells [9] are being developed and characterized.  

 

In general, the energy dispersion relation is assumed ideally to be parabolic. But the deviation of experimental 

results from the theoretical ones indicates the presence of non-ideal conditions. One such condition originates 

from band non-parabolicity. In semiconductors, the energy bands are parabolic only at the vicinity of allowed 

band edge. In bulk materials, higher energy states occupied by the carrier within conduction and valence bands 

may lie far away from the band-edge where assumption of parabolic energy band is no more valid. Such band 

non-parabolicity is more prominent in case of quantum structures, where carriers even in the ground states leave 

the band edges due to quantum size effect. Excitonic states are, therefore, expected to be profoundly influenced 

by the band non-parabolicity and are worth investigating. 
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In the present work, we calculate binding energy of the ground excitonic state in bulk semiconductor and in QW, 

the simplest quantum confined semiconductor structure, in presence of band non-parabolicity. In order to obtain 

exciton binding energy in bulk, we begin with the Schrӧdinger equation and use Kane dispersion relation to 

include non-parabolicity effect in it. The similar formulation is followed for 2D structure. From the derived results, 

exciton binding energies for various semiconductors are estimated using different expressions of non-parabolicity 

factor.  

 

KANE DISPERSION MODEL 
In parabolic approximation, the E – k dispersion relation can be written as 

     𝐸 =
ℏ2𝑘2

2𝑚∗
                                                                                                                                          (1) 

 

with 𝑚∗ being the carrier effective mass, ℏ𝑘 the crystal momentum and ℏ the Dirac’s constant. However at higher 

energies i.e. for states away from the band extrema, the parabolic approximation is rather unsatisfactory. 

Therefore, the energy bands in III-V direct band gap semiconductors can be described by the Kane dispersion 

relation [10], which considerably modifies the parabolic approximation. According to the Kane model, energy in 

a non-parabolic conduction band is represented as, 

     𝐸(𝑘)[1 + 𝛼𝐸(𝑘)] =
ℏ2𝑘2

2𝑚∗
                                                                                                              (2) 

   

from which the energy can be expressed, retaining terms only up to 4th order of k, as 

     𝐸(𝑘) =
ℏ2𝑘2

2𝑚∗
− 𝛼 (

ℏ2𝑘2

2𝑚∗
)

2

                                                                                                            (3) 

where non-parabolicity factor 𝛼, is given by [11], 

     𝛼 = (1 −
𝑚∗

𝑚0

)
2

(
3 + 4𝑥 + 2𝑥2

3 + 5𝑥 + 2𝑥2
)

1

𝐸𝑔

                                                                                            (4) 

In the above equation, 𝑥 =
∆

𝐸𝑔
, where Δ is the spin-orbit splitting, 𝐸𝑔 is the band gap energy, 𝑚∗ and 𝑚0 are the 

effective and free electron masses. In its simplest form, 𝛼 is taken to be reciprocal of the band gap energy 𝐸𝑔 i.e. 

𝛼 =
1

𝐸𝑔
                                                                                                                                                                        (5) 

In order to find out the ground excitonic state in bulk materials in presence of band non-parabolicity, we adopt 

the standard scheme [12] for deriving exciton energy in bulk semiconductors with parabolic energy bands. 

 

EXCITONS IN BULK 
A general form of Schrӧdinger equation, dependent on the position co-ordinates of both electrons and holes 

(𝑟𝑒and 𝑟ℎ) in bulk semiconductors with parabolic E-k dispersion relation, is given [12] as, 

  

      [𝐸𝑔 −
ℏ2

2𝑚𝑒
∗

𝛻𝑒
2 −

ℏ2

2𝑚ℎ
∗ 𝛻ℎ

2 −
𝑒2

4𝜋𝜖(𝑟𝑒 − 𝑟ℎ)
] 𝜓(𝑟𝑒 , 𝑟ℎ) = 𝐸𝜓(𝑟𝑒 , 𝑟ℎ)                                                      (6) 

 

where 𝑚𝑒
∗  and 𝑚ℎ 

∗ are respectively electron and hole effective masses and 𝜖 is permittivity of the semiconductor. 

 

Separation of the wave-function into centre of mass co-ordinate (𝑅 =
𝑚𝑒

∗ 𝑟𝑒+𝑚ℎ
∗ 𝑟ℎ

𝑀
) and relative co-ordinate (𝑟 =

𝑟𝑒 − 𝑟ℎ), followed by transformation from the co-ordinates (re, rh) to (R, r), yields the Schrӧdinger equation 

involving relative motion of the electron-hole pair forming the exciton as,   

(𝐸𝑔 −
ℏ2

2𝜇
∇𝑟

2 −
𝑒2

4𝜋𝜀𝑟
) 𝜓(𝑟) = 𝐸𝑟𝜓(𝑟)                                                                                                             (7) 

 

where,   ∇𝑟
2 =  

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2,𝑟 = √(𝑥2 + 𝑦2 + 𝑧2) is the electron-hole separation, 

𝑀 is total mass of exciton i.e. (𝑚𝑒
∗ + 𝑚ℎ

∗  ), 𝜇 is the reduced mass given by the relationship (
1

𝜇
=

1

𝑚𝑒
∗ +

1

𝑚ℎ
∗ ). 
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To incorporate the effect of band non-parabolicity, we employ the Kane Dispersion relation to modify equation 

(7) as, 

    [−
ℏ2

2𝜇
∇𝑟

2 − 𝛼 (
ℏ2

2𝜇
)

2

∇𝑟
4 −

𝑒2

4𝜋𝜖𝑟
] 𝜓 = (𝐸𝑟 − 𝐸𝑔)𝜓                                                                    (8) 

 

Next, in order to transform Cartesian co-ordinates into plane polar co-ordinates, we represent 
𝜕𝜓

𝜕𝑥
=  

𝑥

𝑟
.

𝜕𝜓

𝜕𝑟
 , and thereby,  

𝜕2𝜓

𝜕𝑥2 =
𝑥2

𝑟2

𝜕2𝜓

𝜕𝑟2 +
1

𝑟

𝜕𝜓

𝜕𝑟
−

𝑥2

𝑟3

𝜕𝜓

𝜕𝑟
.    

  

Similar forms of  
𝜕2𝜓

𝜕𝑦2   and 
𝜕2𝜓

𝜕𝑧2 , along with   
𝜕2𝜓

𝜕𝑥2  , yield 

          ∇𝑟
2𝜓 =

𝜕2𝜓

𝜕𝑟2
+

2

𝑟

𝜕𝜓

𝜕𝑟
                                                                                                                       (9) 

Thus we finally get 

      ∇𝑟
4𝜓 =

4

𝑟

𝜕3𝜓

𝜕𝑟3
+

𝜕4𝜓

𝜕𝑟4
                                                                                                                          (10) 

 

Using expressions (9) and (10) in equation (8), we get the final form of the Schrӧdinger equation, which is to be 

solved by variational technique. 

 

Coulombic interaction between the electron-hole pair is considered to be of Hydrogenic type. Hence, it is a 

standard practice to choosea spherically symmetric wavefunction  𝜓 ~ exp (
−r

𝜆
) as the trial wave function, where 

𝜆 is the variational parameter. Use of the ground excitonic wave function modifies the Schrӧdinger equation as, 

 

     [
1

𝜆2
+

𝛼ℏ2

2𝜇𝜆4
+

2𝜇

ℏ2
(𝐸𝑟 − 𝐸𝑔)] 𝜓 +

1

𝑟
[−

2

𝜆
− 4

𝛼ℏ2

2𝜇𝜆3
+

2𝜇

ℏ2

𝑒2

4𝜋𝜖
] 𝜓 = 0                                      (11) 

 

As r → 0, the above equation diverges. Therefore, the second term must vanish which leads to 

             𝜆3 −
4𝜋𝜖ℏ2

𝜇𝑒2
𝜆2 − (

𝛼ℏ2

𝜇
) (

4𝜋𝜖ℏ2

𝜇𝑒2
) = 0                                                                                 (12) 

 

Solution of the above equation gives the proper value of 𝜆 and is expressed here as 𝜆3𝐷 .  It ,is practically the 

exciton Bohr radius for bulk semiconductor with non-parabolic energy band structures.  

Use of the resulting 𝜆3𝐷 in the first term of equation (11) yields the desired exciton binding energy that can be 

expressed as,  

     𝐸𝐵
(3𝐷)

=
ℏ2

2𝜇𝜆3𝐷
2 + 𝛼 (

ℏ2

2𝜇𝜆3𝐷
2 )

2

                                                                                                    (13) 

 

To get the results for bulk semiconductors with parabolic energy bands, we put 𝛼 = 0 in equations (12) and (13). 

This yields the ground state Bohr radius as, 

     𝜆 =
4𝜋𝜖ℏ2

𝜇𝑒2
                                                                                                                                       (14) 

 

and the corresponding binding energy (𝐸𝐵) as, 

     𝐸𝐵 =
𝜇𝑒4

32𝜋2ℏ2𝜖2
                                                                                                                              (15) 

 

which are the standard results. 

 

EXCITONS IN QUANTUM WELL 
It is already pointed out that in a QW, the ground states of both electron and hole lie away from the band extrema, 

and thereby, make the consideration of band non-parabolicity relevant. As in very narrow wells, the above effect 

becomes much more pronounced, we assume our model to be strictly two-dimensional. The excitons in such QWs 

are also 2D in nature. 
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The Schrӧdinger equation involving relative motion of the electron-hole pair, in presence of band non-

parabolicity, is expressed here as 

[−
ℏ2

2𝜇
∇𝑟⊥

2 − 𝛼 (
ℏ2

2𝜇
)

2

∇𝑟⊥
4 −

𝑒2

4𝜋𝜖𝑟⊥

] 𝜓 = 𝐸𝜓                                                                              (16) 

 

where 𝑟⊥ = √𝑥2 + 𝑦2  is the electron-hole separation in such 2D case. 

 

Accordingly, 

     ∇𝑟⊥
2 =  

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
                                                                                                                           (17) 

 

For conversion of Cartesian co-ordinate system into plane polar co-ordinate system, we proceed as follows: 

 
𝜕𝜓

𝜕𝑥
=

𝑥

𝑟⊥
 .

𝜕𝜓

𝜕𝑟⊥
 and 

𝜕2𝜓

𝜕𝑥2 =  
1

𝑟⊥

𝜕𝜓

𝜕𝑟⊥
−  

𝑥2

𝑟⊥
3

𝜕𝜓

𝜕𝑟⊥
+

𝑥2

𝑟⊥
2

𝜕2𝜓

𝜕𝑟⊥
2  

which together with similar form of  
𝜕2𝜓

𝜕𝑦2   leads to 

          ∇𝑟
2𝜓 =

𝜕2𝜓

𝜕𝑟⊥
2

+
1

𝑟⊥

𝜕𝜓

𝜕𝑟⊥

                                                                                                                (18) 

From this, we can calculate ∇𝑟
4𝜓  in the same way as done earlier and get the final form as, 

          ∇𝑟
4𝜓 =

𝜕4𝜓

𝜕𝑟⊥
4 +

2

𝑟⊥

𝜕3𝜓

𝜕𝑟⊥
3 −

1

𝑟⊥
2 .

𝜕2𝜓

𝜕𝑟⊥
2 +

1

𝑟⊥
3 .

𝜕𝜓

𝜕𝑟⊥

                                                                          (19) 

Use of equations (18), (19) and finally of similar trial wavefunction 𝜓 ~ exp (
−𝑟⊥

𝜆
) gives the Schrӧdinger equation 

(16) modified to the form: 

 

[
1

𝜆2
𝜓 +

𝛼ℏ2

2𝜇𝜆4
𝜓 +

2𝜇

ℏ2
(𝐸𝑟 − 𝐸𝑔)𝜓] +

1

𝑟⊥

(
−1

𝜆
−

𝛼ℏ2

𝜇𝜆3
+

𝜇𝑒2

2𝜋𝜖ℏ2
) 𝜓 +

𝛼ℏ2

2𝜇
[

1

𝑟⊥
2

(
−1

𝜆2
) 𝜓 +

1

𝑟⊥
3

(
−1

𝜆
) 𝜓]

= 0                                                                                                                                    
 

                                                                                                                                                            (20) 

 

The above equation is not valid as r → 0. Therefore, both the second and third terms in equation (20) are equated 

to zero. The second term while equated to zero gives exciton Bohr radius in QW as, 

     𝜆3 −
2𝜋𝜖ℏ2

𝜇𝑒2
𝜆2 −

𝛼ℏ2

𝜇
.
2𝜋𝜖ℏ2

𝜇𝑒2
= 0                                                                                             (21) 

 

Upon solving equation (21), we get exciton Bohr radius in QW for semiconductors with non-parabolic energy 

bands. 

 

Use of the Bohr radius (𝜆2𝐷) in the first term of equation (20) gives the corresponding exciton binding energy in 

QW as 

     𝐸𝐵
(2𝐷)

=
ℏ2

2𝜇𝜆2𝐷
2 + 𝛼 (

ℏ2

2𝜇𝜆2𝐷
2 )

2

                                                                                (22) 

 

Substitution of 𝛼 = 0 in equations (21) and (22) yields  

     𝜆2𝐷 =
2𝜋𝜖ℏ2

𝜇𝑒2
                                                                                                                                           (23) 

and 

     𝐸𝐵
(2𝐷)

=  
𝜇𝑒4

8𝜋2ℏ2𝜖2    
                                                                                                                               (24) 

 

The above expressions (23) and (24) give the Bohr radius and binding energy for exciton ground state in a QW of 

semiconductor with parabolic energy bands, while those in presence of band non-parabolicity are given 

respectively by equations (21) and (22). 
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RESULTS AND DISCUSSION 
Exciton Bohr radii in bulk and QW of different III-V semiconductors are estimated using equations (14) and (23) 

respectively and presented in Table I. The basic expressions, and thereby, the results in Table I indicate the well-

known fact that the exciton Bohr radius in a QW is reduced to half of that in the bulk material. 

 

TABLE 1. Bohr Radius for Ground Excitonic State in Semiconductor Bulk and QW 

Semiconductor    
Bohr radius  𝜆 [ Å ] 

Bulk QW 

InSb 
675.4 337.7 

InAs 
355.1 177.6 

GaSb 
234.0 117.0 

InP 
97.1 48.5 

GaAs 
116.1 58.0 

 

Next, we calculate exciton binding energies in bulk and QW from expressions (13) and (22) respectively, where 

the E-k dispersion relation is assumed to be non-parabolic. Expression (4) and its simplest form (5) are used for 

the band non-parabolicity factor 𝛼. Such results for different III-V semiconductors are presented in Table II, along 

with those for 𝛼 = 0, calculated from expressions (15) and (24). 

 

TABLE 2. Ground State Binding Energy for Excitons in Bulk and QW in the presence and absence of Band 

Non-Parabolicity 

 

 

Semicon-

ductor 

 

 

Band    

gap 

𝐸𝑔[𝑒𝑉] 

Binding Energy (meV) for bulk Binding Energy (meV) for QW 

Non-parabolic 

Parabolic 

Non-parabolic 

Parabolic 

α from 

equation (4) 

[𝑒𝑉−1] 

         𝛼

=
1

𝐸𝑔

[𝑒𝑉−1] 

α from 

equation 

(4) 

[𝑒𝑉−1] 

   𝛼 =
1

𝐸𝑔
[𝑒𝑉−1] 

InSb 0.23 0.60 0.600 0.6 2.422 2.425 2.4 

InAs 0.42 1.38 1.400 1.4 5.572 5.572 5.5 

GaSb 0.81 1.94 1.945 1.94 7.83 7.875 7.8 

InP 1.42 5.99 6.025 6 24.2 24.29 23.9 

GaAs 1.52 4.74 4.715 4.7 19.13 19.13 18.9 

 

It is evident from Table II that in the case of semiconductors with parabolic energy bands, the exciton binding 

energy in QW is enhanced four times with respect to that in bulk. The Table further indicates that the influence 

of band non-parabolicity is almost insignificant on excitons in bulk materials. However, such influence is quite 

pronounced in case of QW. The tabulated results reveal that exciton binding energy in QW with 𝛼 ≠ 0 is even 

greater than four times of that in bulk with 𝛼 = 0. In presence of band non-parabolicity, carrier energies are 

lowered, which effectively reduces the electron-hole separation and in turn, increases the exciton binding energy. 

It may further be noted that the original expression (4) and the approximate one (5) of non-parabolicity factor 𝛼 

do not make any significant change in estimated binding energies. Thus, the simple form of 𝛼 can safely be used 

in calculating exciton binding energy.  

  

CONCLUSIONS 
In 2D systems, due to quantum size effect ground states electron and hole are lifted with respect to the allowed 

band edges. Such energy level lifting will increase in Quantum Wires and Quantum Dots due to higher degree of 
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confinement. So, influence of band non-parabolicity is expected to be more and more prominent, and can be 

further investigated for structures with dimensionality lower than 2D. 
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